Main >  Research

Publications

Origin and evolution of the multiply-quantised vortex instabilitySam Patrick, August Geelmuyden, Sebastian Erne, Carlo F. Barenghi, Silke Weinfurtner
Superradiant scattering of orbital angular momentum beamsC. Gooding, S. Weinfurtner, and W. G. Unruh, Phys. Rev. Research 3, 023242 (2021), https://doi.org/10.1103/PhysRevResearch.3.023242
The sound-ring radiation of expanding vortex clustersAugust Geelmuyden, Sebastian Erne, Sam Patrick, Carlo Barenghi, Silke Weinfurtner
Backreaction in an Analogue Black Hole ExperimentS, Patrick, H. Goodhew, C. Gooding and S. Weinfurtner, Phys. Rev. Lett. 126, 041105 (2021), https://doi.org/10.1103/PhysRevLett.126.041105
Ubiquity of particle–vortex interactions in turbulent counterflow of superfluid heliumP. Švančara, D. Duda, P. Hrubcová, M. Rotter, L. Skrbek, M. La Mantia, E. Durozoy, P. Diribarne, B. Rousset, M. Bourgoin, M. Gibert, Journal of Fluid Mechanics 911, A8, (2021), https://doi.org/10.1017/jfm.2020.1017
Interferometric Unruh detectors for Bose-Einstein condensatesGooding, Cisco and Biermann, Steffen and Erne, Sebastian and Louko, Jorma and Unruh, William G. and Schmiedmayer, Joerg and Weinfurtner, Silke, Phys.Rev.Lett. 125 (2020) 21, 213603, https://doi.org/10.1103/PhysRevLett.125.213603
Unruh and analogue Unruh temperatures for circular motion in 3+1 and 2+1 dimensionsBiermann, Steffen and Erne, Sebastian and Gooding, Cisco and Louko, Jorma and Schmiedmayer, Joerg and Unruh, William G. and Weinfurtner, Silke, Phys.Rev.D 102 (2020) 8, 085006, https://doi.org/10.1103/PhysRevD.102.085006
Estimate of the superradiance spectrum in dispersive mediaT. Torres, Phil. Trans. R. Soc. A 378: 20190236 (2020), https://doi.org/10.1098/rsta.2019.0236
Quasinormal Mode Oscillations in an Analogue Black Hole ExperimentT. Torres, S. Patrick, M. Richartz, and S. Weinfurtner, Phys. Rev. Lett. 125, 011301 (2019), https://doi.org/10.1103/PhysRevLett.125.011301
Reinventing the Zel’Dovich wheelC. Gooding, S. Weinfurtner, and W. G. Unruh, Phys. Rev. A 101, 063819 (2020), https://doi.org/10.1103/PhysRevA.101.063819
Boundary conditions and vacuum fluctuations in AdS4Barroso, V.S., Pitelli, J.P.M., Gen Relativ Gravit 52, 29 (2020), https://doi.org/10.1007/s10714-020-02672-4
An experimental study of turbulent vortex rings in superfluid 4HeP. Švančara, M. Pavelka, M. La Mantia, Journal of Fluid Mechanics 889, A24, (2020), https://doi.org/10.1017/jfm.2020.96
Nonlinear Dynamics of the Cold Atom Analog False VacuumJonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, Andrew Pontzen, Silke Weinfurtner, JHEP 10 (2019) 174, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP10%25282019%2529174&v=f4cd4fbd
Discrete remnants of orbifoldingBiermann, Steffen and Mütter, Andreas and Parr, Erik and Ratz, Michael and Vaudrevange, Patrick K. S., Phys.Rev.D 100 (2019) 6, 066030, https://doi.org/10.1103/PhysRevD.100.066030
Analogue Black Hole Spectroscopy; or, how to listen to dumb holesT. Torres, S. Patrick, M. Richartz, and S. Weinfurtner, Class. Quantum Grav. 36 (2019) 194002, https://doi.org/10.1088/1361-6382/ab3d48
Flight-crash events in superfluid turbulenceP. Švančara, M. La Mantia, Journal of Fluid Mechanics 876, R2, (2019), https://dx.doi.org/10.1017/jfm.2019.586
Inflying perspectives of reduced phase spaceC. Gooding and W. G. Unruh, Phys. Rev. D 100, 026010 (2019), https://doi.org/10.1103/PhysRevD.100.026010
A New Semiclassical Picture of Vacuum DecayJonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, Andrew Pontzen, Silke Weinfurtner, Phys. Rev. Lett. 123, 031601 (2019), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevLett.123.031601&v=9ed6fc43
Boundary conditions and renormalized stress-energy tensor on a Poincaré patch of AdS2João Paulo M. Pitelli, Vitor S. Barroso, and Ricardo A. Mosna, Phys. Rev. D 99, 125008 (2019), https://doi.org/10.1103/PhysRevD.99.125008
Mimicking inflation with 2-fluid systems in a strong gradient magnetic fieldZack Fifer, Theo Torres, Sebastian Erne, Anastasios Avgoustidis, Richard J. A. Hill, Silke Weinfurtner, Phys. Rev. E 99, 031101 (2019), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevE.99.031101&v=ee639277
Analog cosmology with two-fluid systems in a strong gradient magnetic fieldZ. Fifer, T. Torres, S. Erne, A. Avgoustidis, R. J. A. Hill, and S. Weinfurtner, Phys. Rev. E 99, 0311010(R) (2019), https://doi.org/10.1103/physreve.99.031101
Visualization study of thermal counterflow of superfluid helium in the proximity of the heat source by using solid deuterium hydride particlesP. Švančara, P. Hrubcová, M. Rotter, M. La Mantia, Physical Review Fluids 3, 114701 (2018), https://doi.org/10.1103/PhysRevFluids.3.114701
Waves on a vortex: rays, rings and resonancesT. Torres, A. Coutant, S. Dolan, and S. Weinfurtner, Journal of Fluid Mechanics, 857, 291-311 (2017), https://doi.org/10.1017/jfm.2018.752
Towards the cold atom analog false vacuumJonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, Silke Weinfurtner, JHEP 07 (2018) 014, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP07%25282018%2529014&v=b657b433
Vorticity enhancement in thermal counterflow of superfluid heliumP. Hrubcová, P. Švančara, M. La Mantia, Physical Review B 97, 64512 (2018), https://doi.org/10.1103/PhysRevB.97.064512
Low frequency analogue Hawking radiation: The Korteweg-de Vries modelAntonin Coutant, Silke Weinfurtner, Phys. Rev. D 97, 025005 (2018), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.97.025005&v=c0a08f67
Scattering cross section and stability of global monopolesJ. P. M. Pitelli, V. S. Barroso, and Maurício Richartz, Phys. Rev. D 96, 105021 (2017), https://doi.org/10.1103/PhysRevD.96.105021
Flows of liquid 4He due to oscillating gridsP. Švančara, M. La Mantia, Journal of Fluid Mechanics 832, 578-599 (2017), https://doi.org/10.1017/jfm.2017.703
Observation of superradiance in a vortex flowT.Torres, S. Patrick, A. Coutant, M. Richartz, E. Tedford, and S. Weinfurtner., Nature Phys. 13, 833 (2017), https://doi.org/10.1038/nphys4151
Detecting Rotational Superradiance in Fluid LaboratoriesVitor Cardoso, Antonin Coutant, Mauricio Richartz, Silke Weinfurtner, Phys. Rev. Lett. 117, 271101 (2016), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevLett.117.271101&v=8ec84f04
Small-scale universality of particle dynamics in quantum turbulenceM. La Mantia, P. Švančara, D. Duda, L. Skrbek, Physical Review B 94, 184512 (2016), https://doi.org/10.1103/PhysRevB.94.184512
The imprint of the analogue Hawking effect in subcritical flowsAntonin Coutant, Silke Weinfurtner, Phys. Rev. D 94, 064026 (2016), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.94.064026&v=4d701d1b
On the observation of nonclassical excitations in Bose-Einstein condensatesAndreas Finke, Piyush Jain, Silke Weinfurtner, New Journal of Physics, Volume 18, November 2016, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F1367-2630%2F18%2F11%2F113017&v=9ca73093
Cavitation bubbles generated by vibrating quartz tuning fork in liquid 4He close to the λ-TransitionD. Duda, P. Švančara, M. La Mantia, M. Rotter, D. Schmoranzer, O. Kolosov, L. Skrbek, Journal of Low Temperature Physics 187, 376-382 (2017), https://doi.org/10.1007/s10909-016-1684-8
Visualization of viscous and quantum flows of liquid 4He due to an oscillating cylinder of rectangular cross sectionD. Duda, P. Švančara, M. La Mantia, M. Rotter, L. Skrbek, Physical Review B 92, 64519 (2015), https://doi.org/10.1103/PhysRevB.92.064519
Bootstrapping Time Dilation DecoherenceC. Gooding and W. G. Unruh, Found. Phys. 45, 1166 (2015), https://doi.org/10.1007/s10701-015-9939-9
Rotating black holes in a draining bathtub: superradiant scattering of gravity wavesMauricio Richartz, Angus Prain, Stefano Liberati, Silke Weinfurtner, Phys. Rev. D 91, 124018 (2015), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.91.124018&v=447dbb24
Self-gravitating interferometry and intrinsic decoherenceC. Gooding and W. G. Unruh, Phys. Rev. D 90, 044071 (2014), https://doi.org/10.1103/PhysRevD.90.044071
Superradiant scattering of dispersive fieldsMaurício Richartz, Angus Prain, Silke Weinfurtner, Stefano Liberati, Class. Quantum Grav. 30, 085009 (2013), https://arxiv.org/abs/1208.3601
Measurement of stimulated Hawking emission in an analogue systemSilke Weinfurtner, Edmund W. Tedford, Matthew C. J. Penrice, William G. Unruh, Gregory A. Lawrence, Phys. Rev. Lett. 106: 021302, 2011, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevLett.106.021302&v=40605e63
Five-dimensional black hole capture cross sectionsC. Gooding and A. V. Frolov, Physical Review D 77, 104026 (2008), https://doi.org/10.1103/PhysRevD.77.104026
Analogue model of a FRW universe in Bose-Einstein condensates: Application of the classical field methodPiyush Jain, Silke Weinfurtner, Matt Visser, C. W. Gardiner, Phys. Rev. A 76, 033616 (2007), https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevA.76.033616&v=ac6eb6e5
Analogue spacetime based on 2-component Bose-Einstein condensatesSilke Weinfurtner, Stefano Liberati, Matt Visser, Lect. Notes Phys. 718: 115-163, 2007, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2F3-540-70859-6_6&v=96fa9947
Naturalness in emergent spacetimeStefano Liberati, Matt Visser, Silke Weinfurtner, Phys.Rev.Lett. 96 (2006) 151301, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevLett.96.151301&v=9e9073ce
Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensateStefano Liberati, Matt Visser, Silke Weinfurtner, Class.Quant.Grav. 23 (2006) 3129-3154, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F0264-9381%2F23%2F9%2F023&v=e63aeb07
Massive Klein--Gordon equation from a BEC-based analogue spacetimeMatt Visser, Silke Weinfurtner, Phys.Rev. D72 (2005) 044020, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.72.044020&v=f326fa3f
Vortex geometry for the equatorial slice of the Kerr black holeMatt Visser, Silke Weinfurtner, Class.Quant.Grav. 22 (2005) 2493-2510, https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F0264-9381%2F22%2F12%2F011&v=0146108b